
14 CROSSTALK The Journal of Defense Software Engineering March 2006

Designing in UML With the
Team Software Process

The Team Software ProcessSM (TSPSM) is a good project management tool that enforces a disciplined approach to software
engineering, drastically improving cost and schedule performance and the production of quality products. One of the ways TSP
improves product quality is through emphasis on design. A heavy design emphasis is also the hallmark of the newer pro-
gramming environments. This article examines how modern design techniques can be used on a TSP project.

David R. Webb, Ilya Lipkin, and Evgeniy Samurin-Shraer
309 Software Maintenance Group

In late 2004, the 309 Software
Maintenance Group (309 SMXG) at

Hill Air Force Base took on a series of
new projects. One of these projects
focused on updating software in an
embedded weapon system, a task that
309 SMXG was proficient in perform-
ing; however, this new system had been
developed using a modern Unified
Modeling Language (UML) auto code
generation toolset, with which the group
had no prior experience. Assessed as a
Capability Maturity Model® (CMM®)
Level 5 organization in 1998, and focus-
ing on a CMM IntegrationSM (CMMI®)
assessment in 2006, the 309 SMXG was
confident in its ability to deliver software
on time and within budget for tradition-
al projects, but determined that this
newer system required a different
approach.

With this in mind, 309 SMXG
brought in an entirely new team of UML
developers to work on the maintenance
of the new weapon system. The obvious
drawback to this approach was that this
new team had little or no experience
using the disciplined software engineer-
ing techniques required by the CMM and
CMMI. Internal group policies, which
the team was required to follow,
demanded the project to tailor processes
from the organizational standard and to
follow the CMMI’s specific practices for
everything from project planning to
quantitative project management. How-
ever, due to the inexperience of the
team members, the project was strug-
gling to come up to speed on these prac-
tices on a very short schedule.

Having had success in the past using
the Software Engineering Institute’s
(SEISM’s) Team Software ProcessSM

(TSPSM) [1] to bolster the group’s own
internal processes for newer teams, the

309 SMXG decided to use this approach
on the new project. The resulting mar-
riage between UML and TSP created a
flexible and mobile design tool with a
rigid and disciplined process.

TSP and CMMI
Simply put, TSP is CMM/CMMI Level
5 at a project level. It is supported by
team members who perform Level 5
practices at a personal level using SEI’s
Personal Software ProcessSM (PSPSM). A
recent report by the SEI indicates that
adopting the TSP will satisfy most of

the specific practices of the CMMI
process areas [2]. To quickly bring the
team up to speed on the CMMI, the 309
SMXG put the entire software team
through PSP training, which required
about six weeks. They also trained the
team in using a PSP tracking tool called
the Process Dashboard that automates
many of the personal planning and
tracking activities required by the PSP.

At the conclusion of this training, a
certified SEI TSP launch coach took the
team through a one-week TSP launch
session. These sessions are used to
determine stakeholder goals, establish

team roles and processes, and produce
detailed earned value, quality, and risk
management plans. Since these are all
key elements of the CMMI, the launch
sessions are vital to the disciplined soft-
ware engineering practices required by
the model.

It was during this launch that the
team encountered its first issues with the
project’s UML environment. To create
the detailed earned value plans required
by the TSP, each of the team’s major
tasks required some type of size criteria
of task development for estimating pur-
poses. In other words, the team needed a
way of determining which tasks were
larger than others and calculating how
much effort those tasks would require.
In a traditional software environment,
the team would have estimated using
source lines of code (SLOC) and con-
verted from SLOC to effort using a
team productivity rate. There were two
problems with this traditional approach:
(1) since the team was new, there was a
lack of historical data upon which to
base productivity estimates, and (2) the
auto-generated code features of the
UML environment made traditional size
estimation very problematic. Since each
of the team members had measured
their effort and lines of code in the PSP
class, the issue of productivity could
have been addressed by using classroom
averages of SLOC/hour; however, the
problem of size estimation proved much
more difficult.

UML Design With TSP
UML is a language developed by Grady
Booch, James Rumbaugh, and Ivar
Jacobson that uses object-oriented con-
cepts and methodologies to model soft-
ware systems [3]. Simply stated, UML
consists of a set of diagrams that allow
designers to examine a software pro-
gram from several different points of
® Capability Maturity Model, CMM, and CMMI are regis-

tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

SM CMM Integration and SEI are service marks of Carnegie
Mellon University.

Object Specification Internal External

Static Logical Specification Template Functional Specification Template

Dynamic State Specification Template Operational Scenario Template

Table 1. PSP Design Template Structure (SEI).

Table 1: PSP Design Template Structure (SEI)

“The resulting
marriage between

UML and TSP created
a flexible and

mobile design tool
with a rigid and

disciplined process.”

Designing in UML With the Team Software Process

March 2006 www.stsc.hill.af.mil 15

view prior to creating the code [4]. The
standard set of UML diagrams is the fol-
lowing:
• Use Cases.
• Class Diagrams.
• Object Diagrams.
• Sequence Diagrams.
• Collaboration Diagrams.
• State-Chart Diagrams.
• Activity Diagrams.
• Component Diagrams.
• Deployment Diagrams.
Combined views of these diagrams cre-
ate a complete description of the soft-
ware design.

As it turns out, the UML view of
design does not differ significantly from
the basic design techniques taught dur-
ing the PSP course. In fact, the PSP
design templates and design scripts pro-
vide a clear and concise description of
steps needed to produce an effective
design in UML. The PSP design-first
technique uses four orthogonal views of
any software design: internal static
(module or part construction such as the
logical layout of a module), internal
dynamic (characteristic based upon
changing values within the module),
external static (the relationship of a
module or part to other parts in the
product), and external dynamic (the
interactions this part or module has with
other parts in the product). Each design
view has a template to capture the infor-
mation (see Table 1). The following is an
example of how to use them [5].

Let us assume we want to develop
software for a standard traffic light. The
traffic light has three possible condi-
tions: red (stop), yellow (caution), and
green (go). The Operational Scenario
Template (external/dynamic view) is
used to capture the fact that the light
consistently changes from green to yel-
low to red based solely upon a timed
sequence. The State Specification
Template (internal/dynamic view) cap-
tures the fact that there is a defined set
of states through which the traffic light
moves: green, to yellow, to red, and back
to green again. It is not possible to go
from green to red or yellow to green (see
Table 2).

Now that requirements for the traffic
light have been presented, it is time to
capture them in the design. To perform
this task, it is best to use a set of tem-
plates on the requirements; several tem-
plates will be used.
1. Operational Scenario Template

(dynamic/external) is the system
requirements, which are treated as
use cases for the traffic light.

2. Functional Specification Template
(static/external) is used to describe
the traffic light timer functionality
and how it is used.

3. State Specification Template (dy-
namic/internal) is used to capture
the flow of events between states
that are now colors of the traffic
light (see Table 2).

4. Logic Specification Template (static/
internal) can then be used to capture
steps in pseudo code for the user-
entered, action-code portion of
UML. This template makes even the
traditional process of coding almost
trivial. For this example, there is no
pseudo code needed as it is done
entirely in UML events.
When all of these templates are com-

pleted, it becomes obvious how the logic
must be constructed for the software to
run the traffic light system design. It is
now a simple task to draw the design in
UML. The UML design then can auto-
generate code at this stage (Figure 1).

Final UML designs produced, as
shown in Table 3, fit into the same four
quadrants as the PSP design templates.
In Figure 1, the design description of
the traffic light is captured using UML
techniques. The PSP template used to
implement this design description is the
State Specification template, which is
equivalent to the UML State-Chart
Diagram.

The only other diagram created and
required to complete this design is from

Table 1. PSP Design Template Structure (SEI).

State #, Name Description Attributes

Initial System not running Timer event set to 30 seconds

Green On timer time out event go

to(goYellow) Yellow

Timer event set to 45 seconds

Yellow On timer time out event go

to(goRed) Red

Timer event set to 10 seconds

Red On timer time out event go

to(goGreen) Green

Timer event set to 30 seconds

Table 2: Example of the State Specification Template (SEI)

Table 3: PSP Design Structure for UML (SEI)

Object Specification

Static

Internal External

Class Diagrams Component Diagrams

Deployment Diagrams

Object Diagrams

Dynamic Activity Diagrams

State-Chart Diagrams

Use Cases

Sequence Diagrams

Collaboration Diagrams

RED

YELLOW

GREEN

goRed

goYellow

goGreen

Initial

Table 2: Example of the State Specification Template (SEI)

Figure 1: Example of the Working UML
Design Solution for Traffic Light State-Chart
Diagram

Object Specification Internal External

Static Logical Specification Template Functional Specifi

Dynamic State Specification Template Operational Scena

Table 1. PSP Design Template Structure (SEI).

State #, Name Description Attributes

Initial System not running Timer event set to 30 seconds

Green On timer time out event go

to(goYellow) Yellow

Timer event set to 45 seconds

Yellow On timer time out event go

to(goRed) Red

Timer event set to 10 seconds

Red On timer time out event go

to(goGreen) Green

Timer event set to 30 seconds

Table 2: Example of the State Specification Template (SEI)

Table 3: PSP Design Structure for UML (SEI)

Object Specification

Static

Internal External

Class Diagrams Component Diagrams

Deployment Diagrams

Object Diagrams

Dynamic Activity Diagrams

State-Chart Diagrams

Use Cases

Sequence Diagrams

Collaboration Diagrams

RED

YELLOW

GREEN

goRed

goYellow

goGreen

Initial

Table 3: PSP Design Structure for UML (SEI)

Object Specification

Static

Internal External

Class Diagrams Component Diagrams

Deployment Diagrams

Object Diagrams

Dynamic Activity Diagrams

State-Chart Diagrams

Use Cases

Sequence Diagrams

Collaboration Diagrams

GREEN

goYellow

Table 3: PSP Design Structure for UML (SEI)

Figure 2: Example of the Working UML Design Solution for Traffic Light Collaboration (Struct

+/timer

. Timing

Figure 2: Example of the Working UML
Design Solution for Traffic Light Collaboration
(Structure) Diagram

“... the PSP design
templates and design
scripts provide a clear
and concise description

of steps needed to
produce an effective

design in UML.”

PSP/TSP

16 CROSSTALK The Journal of Defense Software Engineering March 2006

the Functional Specification Template.
This template describes timer function-
ality to the traffic light system, which
translates into a collaboration diagram
(Figure 2).

Using UML does not contradict the
TSP philosophy, but in fact works quite
nicely with this highly disciplined
process. In addition, some UML tools
(such as the IBM Rational Rose Real
Time suite, used by the 309 SMXG pro-
ject) offer the unique ability to utilize
these diagrams to create auto-generated
code. The chief reason that size estima-
tion was so difficult for this new 309
SMXG project was due to auto-genera-
tion capability of UML. This seemed to
be the only real issue in dealing with a
modern UML design and development
environment on a TSP project.

A New Size Metric
The problem with using a typical LOC
counter to determine size was the auto-
generated code. When drawing a single
new line in a diagram (what you might
think of as a single SLOC change),
could (and often did) generate dozens of
new and changed SLOC. This was due
to the fact that the tool would rethink the
entire software module, rather than just

the single function being addressed. The
result was that there existed little or no
correlation between SLOC generated
and effort required to produce the
change. A traditional SLOC estimate
would mean little or nothing to this
team; something else was needed for
size and effort estimation.

The size metric required for this pro-
ject had to meet two criteria to be usable
for estimating and tracking: (1) it had to
correlate to the work performed, and (2)
it had to be automatically measurable –
counting any measurement by hand was
deemed to be too slow and inaccurate.
After a great deal of research, the 309
SMXG team decided to try out a rough
approximation of engineer-generated
and auto-generated SLOC. Using what
limited data they had, the team’s design
manager determined that in an average
build, approximately one-third of the
code was user developed (i.e., directly cor-
related to the work performed). The
remaining two-thirds was auto-generat-
ed with considerably less effort on the
engineer’s part. With this in mind, the
team examined modules created by the
original development team prior to the
maintenance phase and applied these
findings to determine adjusted SLOC.

Modules were then estimated using
Adjusted SLOC and the estimates con-
verted to effort using PSP classroom
productivity rates [6].

Once these metrics were determined,
sizes were estimated and effort comput-
ed; this led to the production of the
detailed earned value plan that is the
hallmark of TSP projects.

Running the TSP Project
Since the metrics used to estimate and
track the project size and effort were
new, there was obviously some concern
about the accuracy of the estimates. The
TSP practice of tracking progress at the
personal level and then rolling that data
up to the team level allowed this project
to find and correct potential estimate
issues before the project missed any
schedule deadlines. Effectively, the TSP
and the use of the Process Dashboard
kept members of the team on task and
on schedule [7].

The process steps needed to com-
plete the design were captured as earned
value tasks on each individual software
engineer’s dashboard. The tasks were
then broken down further into some-
thing that could be accomplished on a
weekly basis. During product execution,

Figure 2: Example of the Working UML Design Solution for Traffic Light Collaboration (Structure) Diagram

Task

• Research

• Gather data/documentation

• Identify assumptions

• Analyze

• Analyze/functionally decompose

requirements

• Perform risk analysis

• Identify required system resources

(throughput, speed, memory, etc.)

• Consider alternate solutions

• List the make/buy/reuse alternatives

• List other alternatives

• Utilize decision analysis and resolution as required

• Select solution(s)

• Determine/design interfaces

• Create design document(s)

• Determine and document test requirements

• Perform personal review

• Hold peer reviews/perform corrective actions

• Configure outputs in accordance with the project's

configuration management plan

• Conduct preliminary design review (PDR)

• Coordinate with relevant stakeholder

Verification and Validation

y• Need to create or modif

system design

• Project plans approved

• Resources identified and

available

• Customer requirements

configured

• Perform personal review

• Hold peer reviews/perform corrective actions

• Acceptance of preliminary design by the

interdisciplinary team and the customer

• Relevant stakeholders participate in creation of

outputs and accept the preliminary design

• Design simulation

• PDR

• Preliminary design completed

• PDR completed

• Record project data (effort,

schedule, risk, defect data,

minutes, lessons learned, etc.)

+/timer

. Timing

Entry Exit

Table 4: High Level Design Process Tasks

Designing in UML With the Team Software Process

March 2006 www.stsc.hill.af.mil 17

the team met weekly to ascertain both
team and individual earned value. If a
certain task was taking longer than
expected, it became highly visible to the
team members and the project manager
during the weekly meeting. Any problem
tasks were discussed during weekly team
meetings and addressed by either reas-
signing it to another member or by
addressing the scope with the customer
early enough so as to not cause a sched-
ule slip. In addition, these tasks were
used to determine if some aspects of
the design had been underestimated or
overestimated for the development of
the software. TSP allowed the team to
catch problems at the first sign of an
anomaly and to address it quickly, with-
out significant cost to the customer or
the project [7].

Furthermore, these tasks were based
simply on the steps defined in the pro-
ject that were tailored from the organi-
zational process required by CMMI (see
Table 4). The process descriptions
(called scripts in the TSP) served as handy
references for the team members, detail-
ing what needed to be followed and
completed on the dashboard tracking
tool. The breakdown of the processes
through the dashboard allowed for the
design steps to be tracked individually.

One issue the team did uncover was
a lack of dependency tracking. For
example, if Team Member A needed
Task 1 to be completed by Team
Member B prior to working his/her
task, then Team Member A’s schedule is
dependent upon Team Member B; how-
ever, this dependency is not reflected in
the earned value plan created by the
team during the initial launch.

This is due to the fact that the TSP
earned value plan does not identify these
dependencies. The team found that this
is both a weakness and strength of the
TSP. While the lack of proper depen-
dency tracking often causes confusion
and could result in inaccurate project
status, TSP earned value tracking allows
tasks to be worked in any order. As a
result, team members are free to work
on other issues (clearly identified in their
plan) while they are awaiting the com-
pletion of a dependent task. The danger
is that team members can also choose to
complete all other tasks assigned to
them first and leave the dependency task
for last. This, in effect, creates dead time
for other team members who depend on
the incomplete task. The team solved
this problem by closely coordinating
with each other during the weekly team
meetings [8].

The 309 SMXG project found that it
was possible to run a TSP project with-
in a UML environment.

Lessons Learned
After completion of the design, the
lessons learned from implementation of
the TSP include the following:
• Although the adjusted SLOC estima-

tion worked for first pass through
the project, it has since been found
that it does not always correlate well
to effort. The reason for this is that
the UML tool does not consistently
convert code in the one-third user code
ratio presented above. The UML tool
is highly dependent on the whims of
the auto-generator when converting

UML to SLOC. In future TSP itera-
tions, the team has determined to
find a new method of code counting
and estimating that more accurately
reflects the effort and time spent on
UML. To find this new method,
detailed statistical data is being gath-
ered that reflects UML design
objects and effort taken to produce
them. In the meantime, various size
metrics are being determined and
gathered for code size proxy [8].

• The team determined that TSP does
work in a UML auto-generated code
environment, as long as size estima-
tion issues are properly dealt with
and the percent of time spent in each
phase (design, code, test, etc.) is
adjusted to increase the amount of
time needed to design.

• When designing using UML and
auto-generated code, part of the
design may also be considered imple-
mentation or coding. As a result, the

typical PSP phases must be modified
to reflect that the design phase will
now share tasking from the coding
phase. On our project, this resulted
in a separation of the code phase
into two parts: design/code and
code. The design/code reflected the
auto-generated part of the UML, and
the code reflected the user-entered
portion of the UML implementa-
tion.

Conclusion
The TSP processes were very effective
for this team. Not only did the introduc-
tion of the TSP bring the team’s CMMI
compliance quickly to Level 3 and
beyond, but the structure and format of
the processes allowed for better under-
standing of each team members’
responsibilities and tasks involved in
completion of the design project.u

References
1. Webb, David R., and Watts

Humphrey. “Using the TSP on the
TaskView Project.” CrossTalk
Feb. 1999 <www.stsc.hill.af.mil/
crosstalk/1999/02/index.html>.

2. McHale, James, and Daniel S. Wall.
“Mapping TSP to CMMI.” Pitts-
burgh, PA: Software Engineering
Institute, 22 June 2005.

3. Booch, Grady, James Rumbaugh, and
Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-
Wesley, 2001.

4. Sanderfer, Lynn. “How and Why to
Use the Unified Modeling Language.”
CrossTalk June 2005 <www.stsc.
hill.af.mil/crosstalk/2005/06/0506
sanderfer.html>.

5. Humphrey, Watts S. A Discipline for
Software Engineering. Addison-
Wesley, 1995.

6. Tuma, David, and David R. Webb.
“Personal Earned Value: Why
Projects Using the Team Software
Process Consistently Meet Schedule
Commitments.” CrossTalk Mar.
2005 <www.stsc.hill.af.mil/crosstalk/
2005/03/0503tuma.html>.

7. Webb, David R. “All the Right
Behavior.” CrossTalk Sept. 2002
<www.stsc.hill .af.mil/crosstalk/
2002/09/webb.html>.

8. Webb, David R. “Managing Risk With
TSP.” CrossTalk June 2000 <www.
stsc.hill.af.mil/crosstalk/2000/06/
webb.html>.

“The TSP practice of
tracking progress at the
personal level and then
rolling that data up to
the team level allowed
this project to find and

correct potential
estimate issues before
the project missed any
schedule deadlines.”

PSP/TSP

18 CROSSTALK The Journal of Defense Software Engineering March 2006

Dear CrossTalk Editor,
Kevin Stamey opened the November 2005 issue with these
remarks in his “From the Sponsor” column:

... other engineering design disciplines have been in place
for centuries; however, software engineering is still rela-
tively new. The discipline of software design has only
been matured for a few decades. It wasn’t until the 1960s
that the first software products hit the marketplace ...
Our dominant programming language, C++, didn’t
emerge until the 1980s ...

The relative newness of software engineering is often cited
when explaining the frustrations of the ongoing software crisis.
However, the fact that current practices have only been around for
a few decades, is that really extraordinary? Is our phenomenal
growth all that unique? And have all the other engineering disci-
plines really been around for centuries?

Aeronautical and aerospace engineering may not be as new as
software engineering, but there are certainly not centuries of expe-
rience in those fields. Not long ago, most aircraft were propeller-dri-
ven, and we referred to the sound barrier. Electrical engineering
cannot be considered a centuries-old discipline unless you start with
Ben Franklin’s kite-and-key experiments.

Many of software engineering’s principal tools have indeed been
in place for a relatively short time, but isn’t that true of most engi-
neering disciplines? Niels Bohr’s simplistic model of the atom is less
than 100 years old. Physicists are continually discovering new parti-

cles; researchers are only beginning to explore the possibilities of
quantum computing. Huge advances have been made by materials
scientists, meaning circuitry and silicon technologies have under-
gone several significant advances in a relatively short time.

Indeed, our newness presents some formidable challenges, and
provides fodder for intense debate. But we ought to avoid empha-
sizing that this newness makes us unique, or that our needing to
adapt to rapidly evolving technologies and standards is somehow
exclusive. Such naiveté presents us as making excuses for our short-
comings rather than boldly confronting challenges.

The first transistor was fabricated in the 1940s, and the first
rudimentary integrated circuits were fabricated in the 1950s, about
the same time that early compilers came into being. Software engi-
neers don’t need more time for their field to mature; like others in
technological and engineering fields, we are challenged to advance
and progress in a disciplined yet rapid fashion to keep up with the
monumental advances occurring in the world around us.

There are several aspects of software engineering that set us
apart from other engineering disciplines. Most notably, our end
product is tied to the virtual world, not the physical world. As such,
our discipline is governed less by the laws of physics, and we don’t
rely on equations as fundamental, foundational truths. This makes it
harder to build upon the previous work of theoreticians in a pre-
dictable way – something that I think better explains our slow mat-
uration than our relative newness.

John Reisner
Air Force Institute of Technology

<jreisner@gimail.af.mil>

LETTER TO THE EDITOR

About the Authors

David R. Webb is a
senior technical program
manager for the Software
Division of Hill Air Force
Base in Utah, a Capability
Maturity Model® Level 5

organization. He is a project management
and process improvement specialist with
more than 18 years of technical, program
management, and process improvement
experience with Air Force software. Webb
is a Software Engineering Institute-autho-
rized instructor of the Personal Software
ProcessSM, a Team Software ProcessSM

launch coach, and has worked as an Air
Force section chief, systems software engi-
neer, and test engineer. Webb has a bache-
lor’s degree in electrical and computer engi-
neering from Brigham Young University.

7278 4th ST
BLDG 100 RM 109
Hill AFB, UT 84056
Phone: (801) 940-7005
DSN: 940-7005
E-mail: david.webb@hill.af.mil

Ilya Lipkin is an elec-
tronics engineer at the
309th Software Mainte-
nance Group at the Og-
den Air Logistics Center,
Hill Air Force Base,

Utah. His current research interests
include artificial intelligence, human
knowledge capture and analysis, neural
networks, fuzzy logic, user interface
design, software engineering, and cus-
tomer relations management. Lipkin has
a Bachelor of Science in computer engi-
neering from the University of Toledo, a
Master of Science in computer engineer-
ing from the University of Michigan, and
is a doctoral candidate at the University
of Toledo Business School.

7278 4th ST
BLDG 100 RM 109
Hill AFB, UT 84056
Phone: (801) 586-4477
Fax: (801) 586-2042
E-mail: ilya.lipkin@hill.af.mil

Evgeniy Samurin-Shraer
is an electrical engineer at
the 309th Software Main-
tenance Group at the
Ogden Air Logistic Cen-
ter, Hill Air Force Base,

Utah. His current research interests
include antenna design, resonance fre-
quency circuits, and application of the
microwave theory to the biomedical
problems. Samurin-Shraer has a Bachelor
of Science in electrical engineering and a
Master of Science in electrical engineer-
ing from the University of Toledo.

7278 4th ST
BLDG 100 RM 109
Hill AFB, UT 84056
Phone: (801) 586-2048
Fax: (801) 586-2042
E-mail: evgeniy.samurin-shraer@

hill.af.mil

